Behaviour Investigation of SMA-Equipped Bar Hysteretic Dampers Using Machine Learning Techniques

نویسندگان

چکیده

Most isolators have numerous displacements due to their low stiffness and damping properties. Accordingly, the supplementary systems vital roles in enhancement lower isolation system displacement. Nevertheless, many cases, even by utilising additional dampers systems, occurrence of residual displacement is inevitable. To address this issue, study, a new smart type bar hysteretic equipped with shape memory alloy (SMA) bars recentring features, as damper, introduced investigated. In regard, 630 numerical models SMA-equipped (SMA-BHDs) were constructed based on experimental samples different lengths, numbers, cross sections SMA bars. Furthermore, hysteresis curves corresponding ideal bilinear curves, role geometrical mechanical parameters cyclic behaviour SMA-BHDs was examined. Due deficiency existing analytical models, proposed previously for steel (SBHDs), estimate first yield point post-yield ratio accurately, developed artificial neural network (ANN) group method data handling (GMDH) approaches. The results showed that, although ANN outperform GMDH ones, both ANN- GMDH-based can accurately linear nonlinear pre- parts errors high accuracy consistency.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Design Methodology for Hysteretic Dampers

This research proposes a design methodology for hysteretic dampers in buildings under high levels of seismic hazard. Developments in structural materials have led to designs that satisfy strength requirements but are often very flexible. This trend, along with increasingly stringent building performance criteria, suggests a philosophy of controlling structural motion as opposed to merely design...

متن کامل

Modeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques

In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...

متن کامل

Analytical assessment of reinforced concrete frames equipped with TADAS dampers

In recent years, it is considerably attempted to develop the concept of energy dissipation as an applicable technology to overcome the energy released by earthquakes. The passive control systems such as metallic dampers have been widely considered. The dampers are basically used to mitigate the structural responses and reduce the damages in main structural elements by energy dissipation. ...

متن کامل

investigation of thermal comfort properties of woven sport fabric using blend of estabragh fibers

امروزه لباس در نظر ورزشکاران و کسانی که برای اوقات فراغت خود و یا برای رسیدن به اندامی متعادل، ورزش می کنند؛ بسیار با اهمیت است. احساس مطلوب از لباس در زمره خصوصیات راحتی پوشش می باشد. خصوصیات انتقال رطوبت لباس، در ارزیابی راحتی حسی و حرارتی منسوجات تولید شده از آن ها بسیار مهم است. هدف از این تحقیق، معرفی پارچه جدید است که متشکل از الیاف استبرق با خواص منحصر به فرد می باشد. استبرق لیف طبیعی تو...

Gene Prediction Using Machine Learning Techniques

The basic purpose of the research work aims at predicting the genes of interest in molecular sequence databases using machine learning techniques like neural networks, decision trees, data mining, hidden markov models etc The primary focus of the research will be on proposing new or improving already existing ab initio and homology based methods for gene prediction. The proposed methods will be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app112110057